Тройные системы - Definition. Was ist Тройные системы
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Тройные системы - definition

СОВОКУПНОСТЬ ВЗАИМОСВЯЗАННЫХ КОМПОНЕНТОВ
Системы

Тройные системы      

трёхкомпонентные системы, физико-химические системы, состоящие из трёх компонентов. Примерами практически важных Т. с. являются металлические Сплавы, а также сплавы солей, окислов (шлаки), сульфидов (штейны), системы из воды и 2 солей с общим ионом. Согласно фаз правилу (См. Фаз правило), вариантность (число термодинамических степеней свободы) конденсированных Т. с. (не содержащих газообразной фазы) при постоянном давлении определяется выражением υ = 4 - φ, где φ - число фаз системы. Чтобы получить представление о характере взаимодействия компонентов и практическом применении Т. с., необходимо знать их диаграммы состояния (См. Диаграмма состояния) и диаграммы состав - свойство (См. Диаграмма состав - свойство).

Состояние Т. с. однозначно определяется (при постоянном давлении) 3 переменными: температурой Т и концентрациями 2 компонентов (концентрация третьего компонента определяется из условия х + y + z = 100, где х, у, z - концентрации компонентов). Концентрации обычно выражают в процентах (атомных, молекулярных, по массе). Следовательно, для изображения диаграмм состояния Т. с. необходимо трёхмерное пространство: два измерения служат, чтобы показать изменения состава, а третье показывает изменение температуры фазовых превращений (или свойств). Температуру (или величину свойства) откладывают по вертикальной оси; для указания состава Т. с. обычно применяют равносторонний треугольник, который называется концентрационным (рис. 1). Его вершины А, В, С соответствуют чистым компонентам А, В, С. Каждая сторона треугольника разделена на 100 равных частей. Составы двойных систем А - В, В - С и А - С изображают точками на сторонах AB, BC и AC, а составы Т. с. - точками F внутри треугольника ABC. Способы определения состава в точке F основаны на геометрических свойствах равносторонних треугольников: например прямые Fa, Fb и Fc, параллельные соответственно сторонам BC, AC и AB, отсекают отрезки Ca, Ab и Bc, сумма которых равна стороне треугольника. Точке F на рис. 1 соответствует х\% А, у\% В и z\% С.

Трёхмерные диаграммы состояния Т. с. представляют в виде трёхгранных призм, ограниченных сверху сложными поверхностями ликвидуса, являющимися геометрическим местом точек, каждая из которых соответствует температуре начала кристаллизации. На рис. 2 показан простейший пример диаграммы состояния Т. с. А - В - С, компоненты которой не образуют между собой химических соединений, неограниченно взаимно растворимы в жидком состоянии и не способны к полиморфным превращениям. Двойные системы А - В, В - С и А - С с эвтектическими точками e1, e2 и e3 изображают на гранях призмы. Ликвидус состоит из поверхностей Ae1Ee3 (начало кристаллизации А), Be1Ee2 (начало кристаллизации В) и Ce2Ee3 (начало кристаллизации С). Плоскость PQR, проходящая через точку тройной эвтектики Е параллельно основанию призмы, является солидусом Т. с. (геометрическим местом точек, соответствующих температурам конца кристаллизации).

В точке Е число сосуществующих фаз, максимальное для Т. с., равно 4 (жидкость и кристаллы А, В, С), а их равновесие нонвариантно (температура кристаллизации и состав фаз постоянны).

Пользоваться объёмным изображением диаграмм состояния Т. с. практически очень неудобно, поэтому применяют ортогональные проекции и сечения: горизонтальные - изотермические и вертикальные - политермические (см. Физико-химический анализ). На рис. 3 показана проекция диаграммы рис. 2 на плоскость треугольника A'B'C'. На ней 3 поверхности ликвидуса изображаются 3 полями кристаллизации A'e'1E'e'3, B'e'1E'e'2 C'e'2E'e'3, проекция солидуса, очевидно, совпадает с треугольником A'B'C'. Стрелки указывают направления понижения температур. Рассмотрим последовательность выделения твёрдых фаз в поле A'e'1E'e'3. Если точка F лежит на прямой A'E', то из жидкой фазы при охлаждении выпадают кристаллы А, причём отношение концентраций В и С остаётся постоянным. В результате, когда состав Т. с. достигнет точки E', начинается совместная кристаллизация компонентов А, В и С при постоянной температуре (так как при 4 фазах и постоянном давлении Т. с. нонвариантна). Если точка F1 лежит в области A'e'1E'; то сначала выпадают кристаллы А, затем, когда состав жидкой фазы дойдёт до точки f1, по кривой e1E' пойдёт совместная кристаллизация А и В, затвердевание закончится в точке E'. Итак, последовательность кристаллизации жидкой фазы состава F1 изображается в совокупности отрезком F1f1E'. Подобным же образом можно проследить ход кристаллизации любой жидкой фазы системы А - В - С. На той же проекции наносят изотермы начала кристаллизации (показаны тонкими линиями). Вертикальные сечения более сложны, чем диаграммы двойных систем. Исключение составляют так называемые квазибинарные сечения тех Т. с., где образуются двойные и тройные соединения постоянного состава. Правила проведения таких сечений (сингулярная триангуляция Т. с.), впервые сформулированные в 1925 Н. С. Курнаковым, позволяют упростить рассмотрение сложных Т. с.

Экспериментальное построение полных диаграмм состояния Т. с. очень трудоёмко. Между тем для практических целей нередко достаточно построения боковых двойных систем и положения моновариантных кривых, нонвариантных точек и областей распространения твёрдых растворов на основе компонентов Т. с. В ряде случаев термодинамические расчёты простейших типов двойных и тройных диаграмм состояния дают результаты, близкие к экспериментальным данным. Для расчётов равновесий в Т. с. используют различные упрощённые модели; для решения сложных термодинамических уравнений разработаны специальные программы и применяется вычислительная техника.

Лит.: Курнаков Н. С., Избр. труды, т.1-3, М., 1960-63; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. - Л., 1947; Воловик Б. Е., Захаров М. В., Тройные и четверные системы, М., 1948; Петров Д. А., Тройные системы, М., 1953; Справочник по плавкости систем из безводных неорганических солей, т. 1-2, М, - Л., 1961; Захаров А. М., Диаграммы состояний двойных и тройных систем, М., 1964; Ванюков А. В., Зайцев В. Я., Шлаки и штейны цветной металлургии, М., 1969; Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 2 изд., М., 1973; Кауфман Л., Бернстейн Х., Расчет диаграмм состояния с помощью ЭВМ, пер. с англ., М., 1972; Диаграммы состояния металлических систем, в. 1-18, М., 1959-75.

Рис. 1 к ст. Тройные системы.

Рис. 2 к ст. Тройные системы.

Рис. 3 к ст. Тройные системы.

Системы полива         
  • Системы полива на полях
Системы Полива
Систе́мы поли́ва — различного вида инженерно-технические комплексы, обеспечивающие орошение определенной территории.
Буферные системы крови         
Буферные системы
Бу́ферные систе́мы кро́ви (от , buff — «смягчать удар») — физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в кровиБерезов Т. Т.

Wikipedia

Система

Систе́ма (др.-греч. σύστημα «целое, составленное из частей; соединение») — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

Потребность в использовании термина «система» возникает в тех случаях, когда нужно подчеркнуть, что что-то является большим, сложным, не полностью сразу понятным, при этом целым, единым. В отличие от понятий «множество», «совокупность» понятие системы подчёркивает упорядоченность, целостность, наличие закономерностей построения, функционирования и развития (см. ниже ).

В повседневной практике слово «система» может употребляться в различных значениях, в частности:

  • теория, например, философская система Платона;
  • классификация, например, периодическая система химических элементов Д. И. Менделеева;
  • метод практической деятельности, например, система Станиславского;
  • способ организации мыслительной деятельности, например, система счисления;
  • совокупность объектов природы, например, Солнечная система;
  • некоторое свойство общества, например, политическая система, экономическая система и т. п.;
  • совокупность установившихся норм жизни и правил поведения, например, правовая система или система моральных ценностей;
  • закономерность («в его действиях прослеживается система»);
  • конструкционный принцип («оружие новой системы»);
  • и другие.

Изучением систем занимаются такие инженерные и научные дисциплины как общая теория систем, системный анализ, системология, кибернетика, системная инженерия, термодинамика, ТРИЗ, системная динамика и т. д.